Anyone watching the recent 60 Minutes segment on CRISPR would conclude that the gene editing technology is on the brink of pouring forth a cascade of cures. But a recent study reveals a mess of missing and moved chromosome parts in the wake of deploying the famed “molecular scissors.”
Invented in 2012, CRISPR brilliantly borrows a bacterial defense against infection. The “clustered regularly interspaced short palindromic repeats” are simple DNA sequences that serve as landing strips in a genome where engineered “guide RNAs” deliver an enzyme to a desired gene, amending or obliterating it. When the enzyme snips across the double helix, natural DNA repair ensues. Cas9 is an oft-used enzyme.
Precision
Unlike conventional gene therapy that adds a gene, sometimes hovering in a DNA loop outside a chromosome, CRISPR swaps in or removes a gene at a precise spot. But it took 27 years for the FDA to approve the first gene therapy, Luxturna, to treat a specific form of hereditary blindness, last December. So CRISPRed drugs won’t be hitting CVS or Walgreen’s shelves anytime soon.
The new report, in Nature Biotechnology, from researchers at the Wellcome Sanger Institute, isn’t the first to find a CRISPR glitch, and it certainly won’t be the last.
To continue reading go to DNA Science Blog, where this post first appeared. Read More
Invented in 2012, CRISPR brilliantly borrows a bacterial defense against infection. The “clustered regularly interspaced short palindromic repeats” are simple DNA sequences that serve as landing strips in a genome where engineered “guide RNAs” deliver an enzyme to a desired gene, amending or obliterating it. When the enzyme snips across the double helix, natural DNA repair ensues. Cas9 is an oft-used enzyme.
Precision
Unlike conventional gene therapy that adds a gene, sometimes hovering in a DNA loop outside a chromosome, CRISPR swaps in or removes a gene at a precise spot. But it took 27 years for the FDA to approve the first gene therapy, Luxturna, to treat a specific form of hereditary blindness, last December. So CRISPRed drugs won’t be hitting CVS or Walgreen’s shelves anytime soon.
The new report, in Nature Biotechnology, from researchers at the Wellcome Sanger Institute, isn’t the first to find a CRISPR glitch, and it certainly won’t be the last.
To continue reading go to DNA Science Blog, where this post first appeared. Read More